61,328 research outputs found

    Scaling law for the electromagnetic form factors of the proton

    Get PDF
    The violation of the scaling law for the electric and magnetic form factors of the proton are examined within the cloudy bag model. The suppression of the ratio of the electric and magnetic form factors is natural in the bag model. The pion cloud plays a moderate role in understanding the recent data from TJNAF.Comment: 8 pages, REVTeX, 2 figures include

    Two-photon exchange effect on deuteron electromagnetic form factors

    Full text link
    Corrections of two-photon exchange to proton and neutron electromagnetic form factors are employed to study the effect of two-photon exchange on the deuteron electromagnetic form factors. Numerical results of the effect are given. It is suggested to test the effect in the measurement of PzP_z in a small angle limit.Comment: 12 pages 9 figure

    Nucleon form factors from a covariant quark core: limits in their description

    Get PDF
    In treating the relativistic three-quark problem, a dressed-quark propagator parameterization is used which is compatible with recent lattice data and pion observables. Furthermore two-quark correlations are modeled as a series of quark loops in the scalar and axialvector channel. The resulting reduced Faddeev equations are solved for nucleon and delta. Nucleon electromagnetic form factors are calculated in a fully covariant and gauge--invariant scheme. Whereas the proton electric form factor GEG_E and the nucleon magnetic moments are described correctly, the neutron electric form factor and the ratio GE/GMG_E/G_M for the proton appear to be quenched. The influence of vector mesons on the form factors is investigated which amounts to a 25 percent modification of the electromagnetic proton radii within this framework.Comment: 28 pages, 10 figures, 4 table

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure

    The electromagnetic form factors of the proton in the timelike region

    Full text link
    The reactions ppbar -> e+e- and e+e- -> ppbar are analyzed in the near-threshold region. Specific emphasis is put on the role played by the interaction in the initial- or final antinucleon-nucleon state which is taken into account rigorously. For that purpose a recently published NNbar potential derived within chiral effective field theory and fitted to results of a new partial-wave analysis of ppbar scattering data is employed. Our results provide strong support for the conjecture that the pronounced energy dependence of the e+e- ppbar cross section, seen in pertinent experiments, is primarily due to the ppbar interaction. Predictions for the proton electromagnetic form factors G_E and G_M in the timelike region, close to the NNbar threshold, and for spin-dependent observables are presented. The steep rise of the effective form factor for energies close to the ppbar threshold is explained solely in terms of the ppbar interaction. The corresponding experimental information is quantitatively described by our calculation.Comment: 14 pages, 11 figure

    Phenomenological insight into JLab proton polarization data puzzle by deuteron impulse approximation

    Get PDF
    The non-relativistic impulse approximation of deuteron electromagnetic form factors is used to investigate the space-like region behavior of the proton electric form factor in regard of the two contradictory experimental results extracted either from Rosenbluth separation method or from recoil proton JLab polarization data.Comment: Revtex, 6 pages, 7 figure

    Charge Symmetry Violation in the Electromagnetic Form Factors of the Proton

    Get PDF
    Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD
    corecore